In [1]:
    
%matplotlib notebook
import convis
    
    
The convis.samples module contains a few general purpose stimuli and convis.kernels contains convolution kernels.
In [2]:
    
stim = convis.samples.pulse(t=2000,x=20,y=20,pulse_length=100)
convis.animate_to_video(stim,scrolling_plot=True,window_length=1000)
    
    Out[2]:
In [3]:
    
stim = convis.samples.chirp(t=2000, x=20, y=20,
                            pulse_on=500, pulse_off=1000,
                            amp_on=1500, amp_off=2500, amp_freq=5.0, amp_1=0.0, amp_2=1.0,
                            freq_on=3000, freq_off=4000, freq_1=0.1, freq_2=10.0,
                            stimulus_off=4500)
convis.animate_to_video(stim,scrolling_plot=True,window_length=1000)
    
    Out[3]:
In [4]:
    
stim = convis.samples.moving_grating(t=2000, x=20, y=20, vt=0.005, vx=3.0, vy=2.0, p=0.01)
convis.animate_to_video(stim,scrolling_plot=True,window_length=1000)
    
    Out[4]:
In [5]:
    
stim = convis.samples.moving_bar(t=2000, x=20, y=20,
                                 bar_pos=-1.0,
                                 bar_direction=0.0,
                                 bar_width=1.0,
                                 bar_v=0.01)
convis.animate_to_video(stim,scrolling_plot=True,window_length=1000)
    
    Out[5]:
In [6]:
    
stim = convis.samples.random_checker_stimulus(t=2000, x=20, y=20, checker_size=5, seed=123)
convis.animate_to_video(stim,scrolling_plot=True,window_length=1000)
    
    Out[6]:
In [19]:
    
print '\n'.join(filter(lambda x: not x.startswith('_'), dir(convis.kernels)))
    
    
In [8]:
    
kernel = convis.kernels.gabor_kernel(phi=2.0, size=16, resolution=2.0, f=10.0, phase=0.0, sigma_x=1, sigma_y=1)
convis.describe(kernel)
    
    Out[8]:
In [9]:
    
kernel = convis.kernels.text_kernel()
convis.describe(kernel)
    
    Out[9]:
In [10]:
    
kernel = convis.kernels.exponential_filter_1d(tau=0.01,
                                                        n=0,
                                                        normalize=True)
convis.describe(kernel)
    
    Out[10]:
In [11]:
    
kernel = convis.kernels.exponential_highpass_filter_1d()
convis.describe(kernel)
    
    Out[11]:
In [12]:
    
kernel = convis.kernels.gauss_filter_2d(0.1,0.1)
convis.describe(kernel)
    
    Out[12]:
In [ ]: